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a b s t r a c t

Analytical expressions are determined for the nonlinear resonant frequency (or natural

frequency) of the fundamental lateral mode of a pile. A pile with a floating toe, with and

without pile cap is considered in this paper. The influence of a nonlinear soil spring

model that varies with depth and a nonlinear damping model that is strain amplitude

dynamics is derived from an energy based formulation. This equation is a Duffing’s type

nonlinear differential system that has nonlinear damping. Harmonic balance with

numerical continuation is employed to determine the nonlinear resonance curves of the

system. Comparison with some experimental results is made.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Climate change has resulted in a change in societal requirements for energy production. The need for reduced CO2

emissions and the perceived threats to the supply of carbon based energy sources has resulted in a return to renewable
energy. For example, there has been a huge increase in wind energy production. Vast wind farms have been constructed
both on- and off-shore. The off-shore wind turbines use a range of different types of foundations that are dependant on site
conditions. Use of large monopile foundations is not uncommon. Efficient design requires simple design rules as well as
complex computational modelling. Nonlinear finite element modelling of time varying loading histories, such as
earthquakes, is a complex undertaking for a design engineer. Validation of results obtained by such a process is vital. So
simple design formulae are very useful in practice. Thus, there is a need to develop good approximations to the nonlinear
resonant frequency of piles in both linear and nonlinear soils.

It is surprising that, in the literature, there is no exact analytic expression for the natural frequency of a single pile in
elastic medium. In the linear case, and constant soil stiffness with depth, researchers [1–4] suggest various semi-analytical/
empirical expressions based on a simple equivalent cantilever system. Ref. [1] provides a method for obtaining an
analytically accurate equivalent stiffness and mass of the pile that is based on linear soil. For the case of nonlinear soil no
such resonant frequency estimates are available.

This paper considers a single pile, with an additional lumped mass at its head. It is embedded in a nonlinear soil. The
linear natural frequency is estimated and in addition the nonlinear resonant frequency is obtained. This is for the case of
nonlinear soil behaviour.

This paper uses a soil springs analogy (after Winkler) to model the soil. Nonlinear P–y curves (where P is spring load per
unit length and y is lateral pile deflection) are employed to determine the spring stiffness vs. compression of these springs.
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Nomenclature2

ai harmonic balance coefficients
ag peak ground acceleration (PGA) ðLÞðTÞ�2

A ground acceleration amplitude
c; c1; c2 Rayleigh damping coefficient ðFÞðTÞðLÞ�2

C1;C2 linear and nonlinear damping coefficients
D dynamic matrix for linear modal analysis
D pile diameter ðLÞ
EI pile flexural rigidity ðFÞðLÞ2

F forcing parameter
k0 initial modulus of subgrade reaction ðFÞðLÞ�3

kw1 linear soil spring constants ðFÞðLÞ�2

kw2 nonlinear soil spring constant ðFÞðLÞ�4

K stiffness matrix for linear modal analysis
K1 linear stiffness coefficient of system
K2 nonlinear stiffness coefficient of system
Kg linear stiffness coefficient of near–far-field

boundary
L total pile length ðLÞ
mh mass of at head of pile ðFÞðTÞ2ðLÞ�1

mp mass per unit length of pile ðFÞðTÞ2ðLÞ�2

m mass per unit length of pile and near field soil
layer ðFÞðTÞ2ðLÞ�2

M total system mass
M mass matrix for linear modal analysis
Mg effective mass at near–far-field boundary
P soil spring load per unit length ðFÞðLÞ�1

p soil spring load per unit area ðFÞðLÞ�2

Pu ultimate bearing capacity at depth z ðFÞðLÞ�1

Pub ultimate bearing capacity at base (toe) of pile
ðFÞðLÞ�1

qi solution vector of harmonic balance continua-
tion.

R Rayleigh dissipative function ðFÞðTÞ�1
ðLÞ

s frequency, dimensional ðradÞðTÞ�1

t time ðTÞ
u scaled ordinate w

ug scaled ordinate wg

U total potential energy ðFÞðLÞ

T total kinetic energy ðFÞðLÞ
wðtÞ temporal ordinate of y

wgðtÞ temporal ordinate of yg

wq;w vectors of generalised coordinates, for linear
modal analysis

y relative lateral pile deflection ðLÞ
yg displacements of the near–far field boundary

ðLÞ

yp limit of deflection for problem domain ðLÞ
z ordinate along the pile ðLÞ
a mass ratio
b1 nonlinear to linear stiffness ratio of system
b2 mass ratio of far-field effective mass to pile

and near-field mass
b3 stiffness ratio of near–far-field boundary to

pile and near-field stiffness
e strain in soil springs
zbD breadth (out of plane) soil layer ðLÞ
zwL effective, in-plane, width of near-field soil

layer ðLÞ
Z1 linear soil to pile stiffness parameter
Z2 nonlinear soil to pile stiffness parameter
h1; h2 vectors of shifted Legendre polynomials, for

linear modal analysis
m1 linear damping ratio
m2 nonlinear damping ratio
mn nonlinear to linear damping parameter ratio
mmax maximum ratio of critical damping at large soil

strain
x ordinate along pile
P Lagrangian for linear modal analysis ðFÞðLÞ
rs density of near-field soil layer ðFÞðTÞ2ðLÞ�4

t scaled time
fðxÞ spatial ordinate of y, shape function
cðxÞ spatial ordinate of yg , shape function
o forcing frequency ratio
of forcing frequency ðradÞðTÞ�1

o1 small-strain (linear) resonant fundamental
frequency of system ðradÞðTÞ�1
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The stiffness of these springs also varies with depth from the surface. In addition, a strain-dependant nonlinear damping
function is employed. Both the stiffness and damping functions match experimental observations qualitatively. After
various non-dimensional ordinates are introduced, it is possible to reduce the general system to Duffing’s oscillator that
has nonlinear damping. It is demonstrated that this Duffing’s like system is a generic one that applies for all cases of
different pile kinematical boundary conditions.

Three main results are presented in this paper, (i) the small strain (linear) resonant system frequency o1, Fig. 2 (or Eq. (61)),
(ii) the reduction of this linear frequency with increases in non-dimensional forcing parameter F, Eq. (45) and (iii) the
relationship between non-dimensional forcing F and peak ground acceleration (PGA) ag , Eq. (51). Experimental results obtained
elsewhere together with a finite element analysis (FEA) are employed to provide some validation of the small strain formula.
2. Analytical model

Consider the system described in Fig. 1. The pile is surrounded by a ‘‘near field’’ soil stack of layers. A continuum of
layers surround the pile. Each layer contains a nonlinear spring, nonlinear dashpot and lumped masses. The effective width
2 Dimensional units denoted in this paper by bracketed terms, where (F) is force, (L) is length and (T) is time. The dimensionless derived unit (rad) is

an angle in radians.
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Fig. 1. Analytical model.
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of the near-field layer is zwL. The system is sub-structured such that only the near field soil, pile and superstructure mass
are considered. For equilibrium to be maintained a set of reactions, Q ðz; tÞ, that vary with depth are applied to the near field
soil stack. Thus, only the horizontal displacement at the far field–near field interface ygðz; tÞ and these reactions Q ðz; tÞ are
necessary. The total displacement of the pile is ygðz; tÞ þ yðz; tÞ where yðz; tÞ is a relative horizontal displacement of the pile.

2.1. Using P–y backbone curves

For a range of different soils many different P–y curves proposed by researchers [2–7] and others (too numerous to
mention here). The fidelity of these forms of curves to experimental data has been questioned by [7,8]. Results suggest that
there is some scatter about these nonlinear trends. This scatter is due to lack of heterogeneity and complex hysteretic
nonlinear behaviour of real soils. An example of this scatter is given in [9,10]; where full scale dynamic test data for a pile
driven in medium-dense sand is obtained. Dynamic test results show an approximately cubic p–y curve (where p is soil
spring load per unit area) complete with a falling part, (cf. Fig. 12 in [9]).

Note that P–y curves for pile-soil springs are normally obtained by applying a load at the head of the pile and recording
the displacements of the pile. This is the case for experimental study [9,10]. In this situation the pile ground displacement
field yg is zero and y is the relative displacement of pile and the total displacement of the pile.

More recent work, [11], has suggested that the p–y curves can be loading rate dependant. Thus [11] suggest p–y curves
based on static or slow cyclic loading may underestimate the backbone observed under faster cyclic loading. This strain
rate hardening in clay soils is clear; in sands this effect seems less marked. The basic shape of these dynamic p–y curves, in
[11], is still fairly similar to the static p–y curves with a scaling (stretching) of the p axis.

However, for all their limitations P–y curves provide a pragmatic and useful engineering simplification and are used
widely in practice. In this paper the form of [7,12] is taken. This is shown in Eq. (1); where P is the soil-spring reaction at
depth z, Pu is the ultimate bearing capacity at a depth of z, A is 0.9 a reduction factor for dynamics, k0 is the initial modulus
of subgrade reaction [6], y is the horizontal pile deflection at depth z. This can be re-expressed by assuming that the Pu

varies linearly with depth (2); thus it can be expressed in terms of Pub the ultimate bearing capacity at the base of the pile
i.e. at depth L. This follows the functional form presented in work of [13–16]. This linear assumption differs from the
American Petroleum Institute (API) [12] recommendation that assumes a quadratic variation of Pu with depth for ‘‘shallow
depths’’ and a linear variation of Pu with depth for ‘‘deep depths’’. Ref. [16] suggests that the API quadratic variation that
was based on a wedge failure mechanism at shallow depths is unduly optimistic compared with other proposed models.
Experimental results presented in [17] (cf. Figs. 12 and 14) show a near linearly increase in Pu with depth. Nevertheless, in
this paper, a linear variation with depth is assumed mainly because it is computationally simplifying.

Pðx; zÞ ¼ seAPutanh
k0z

APu
y

� �
¼ seAPub

z

L

� �
tanh

k0L

APub
y

� �
(1)

Pu ¼ Pub
z

L

� �
(2)

For dynamic p–y curves to be incorporated, as [11] suggests, a scale factor se to the p axis should be applied. A Taylor series
expansion suggests that the tanh function can be expressed as a cubic with higher terms neglected, for a small range of y.
However, just expanding and neglecting higher order terms does not often produce the best fit over the problem domain
jyjryp. The optimal values of linear and nonlinear spring constants kw1 and kw2 should be sought, in a least square sense,
employing Eq. (60) from Appendix B. Thus, the optimal spring coefficients are given by (4) and (5) in terms of k0, L, yp and
Pub. Note that for jyj4yp the cubic function falls away from API backbone curve. This can be an advantage as it models
degradation of stiffness at large cyclic strains as seen in [9].



ARTICLE IN PRESS

N.A. Alexander / Journal of Sound and Vibration 329 (2010) 1137–11531140
In summary, the cubic P–y curve proposed in this paper enforces quartic nonlinear strain energy of the soil.

L

z

� �
P ¼ seAPubtanh

k0L

APub
y

� �
� kw1y� kw2y3 þ Oðy5Þ; jyjryp (3)

kw1 ¼
75

4y3
p

Z yp

0

L

z

� �
Py dy�

105

4y5
p

Z yp

0

L

z

� �
Py3 dy (4)

kw2 ¼
105

4y5
p

Z yp

0

L

z

� �
Py dy�

175

4y7
p

Z yp

0

L

z

� �
Py3 dy (5)

2.2. Potential energy of system

The potential Energy U of this system is composed of two terms: (i) the flexural strain energy of the pile group and (ii)
the soil spring stiffness energy. The work done by the far-field soil reactions Q is neglected here as it does not contribute to
the subsequent equations of motion. Hysteretic behaviour of springs is not modelled directly as this greatly increases the
analytical complexity. However, it is not ignored. The hysteretic behaviour of springs is summed up per cycle and included
as an increased nonlinear damping term proposed later. This approach follows work of Voigt and Maxwell described in
[18]. This approach is used to determine the variation of soil damping coefficient with strain levels.

U ¼
1

2

Z L

0
EIðy00 þ yg

00 Þ
2 dzþ

Z L

0

1

2
kw1

z

L

� �
y2 �

1

4
kw2

z

L

� �
y4 dz (6)

If a classical Rayleigh–Ritz spatial–temporal series is adopted, i.e. y ¼
P

wiðtÞfiðzÞ then an n degree of freedom nonlinear
system is obtained. This is equivalent to a high order (i.e. 2n) nonlinear ODE. Unfortunately, this is not suitable for an initial
investigation into the problem. These high order systems are left for later. In this paper, a first order approximation
(a reduced order system) is assumed e.g. using Eq. (7) that result in a nonlinear, single degree of freedom system. This
introduces one unknown degree of freedom, w, where wL is the displacement at the top of the pile, and the known degree
of freedom, wg where wgL is the surface ground horizontal displacement. A non-dimensional variable, x, is introduced; it is
an ordinate along the pile. Hence primes and double primed variables from now on denote first and second derivative with
respect to x. The potential energy can be re-expressed as (8): non-dimensional parameters in Eqs. (9) and (10) are
introduced.

y ¼ LwðtÞfðxÞ; yg ¼ LwgðtÞcðxÞ; x ¼ z=L (7)

U ¼
1

2

EI

L
ðK1w2 �

1

2
K2w4 þ 2KgwwgÞ þ OðwgÞ (8)

Z1 ¼
kw1L4

EI
; Z2 ¼

kw2L6

EI
(9)

K1 ¼

Z 1

0
f
002
þ Z1xf

2 dx; K2 ¼ Z2

Z 1

0
xf4 dx; Kg ¼

Z 1

0
f00c00 dx (10)

2.3. Kinetic energy of system

The translational, horizontal, kinetic energy T of the system is defined in (12). The rotational kinetic energy of pile and
superstructure mass are neglected in this paper. Parameter mh is the lumped mass at pile head; i.e. the mass of any
structure attached to the top of the pile. m is the mass per unit depth of the pile and soil layer; where mp is the mass per
unit depth of the pile and rs density of the ‘‘near field’’ soil layer. The out of plain breadth of the soil layer is assumed to be
zbD. The soil mass for a layer dz is lumped half on the pile and half at the near–far-field boundary. The kinetic energy can be
re-expressed, in quadratic form, in terms of degrees of freedom w and wg by Eq. (13); by using non-dimensional
parameters in Eqs. (14) and (15).

m ¼ mp þ
1
2rszwzbLD (11)

T ¼
1

2

�
mhð _ygð0Þ þ _yð0ÞÞ2 þm

Z L

0
ð _yg þ _yÞ2 dz

�
(12)

T ¼ 1
2mL3ðM _w2

þ 2Mg _w _wgÞ þ Oð _w2
g Þ (13)

M ¼ afð0Þ2 þ
Z 1

0
f2 dx; Mg ¼ afð0Þcð0Þ þ

Z 1

0
fcdx (14)

a ¼ mh

mL
(15)
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2.4. Rayleigh dissipative function of system

The damping coefficient of the soil is assumed quadratic in nature, (16); this follows the experimental evidence of [8,19]
that suggest the ratio of critical damping is dependent of cyclic soil shear strain amplitude. The strain in the soil spring is
e ¼ y=zwL. The system Rayleigh dissipative function, R, is given by Eq. (17); frequency s is introduced to aid later
simplifications.

c ¼ c1 þ c2e2 (16)

R ¼
1

2

Z L

0
c1 þ c2

y

zwL

� �2
 !

_y2 dz ¼
1

2
mL3sðC1 þ C2w2Þ _w2 (17)

C1 ¼
c1

ms

Z 1

0
f2 dx; C2 ¼

c2

msz2
w

Z 1

0
f4 dx (18)

s2 ¼
EI

mL4
(19)

2.5. Equation of motion for system

Thus the Euler–Lagrange–Rayleigh equation of motion (20) can be obtained from (8), (13) and (17). This is re-expressed
by the introduction of frequency parameter o1 Eq. (21). Also non-dimensional parameters b1, b2, b3, m1, m2 are introduced,
see Eqs. (22) and (23)

€w þ 2ðm1 þ m2w2Þ _w þw� b1w3 ¼ �b2 €wg � b3wg (20)

o1 ¼ s

ffiffiffiffiffiffi
K1

M

r
(21)

b1 ¼
K2

K1
; b2 ¼

Mg

M
; b3 ¼

Kg

K1
(22)

m1 ¼
C1

2
ffiffiffiffiffiffiffiffiffiffi
MK1

p ; m2 ¼
C2

2
ffiffiffiffiffiffiffiffiffiffi
MK1

p (23)

This equation of motion (20) has been further simplified by introducing a time-scale t ¼ o1t. Note, subsequently, dots
above letters denote differentials with respect to t i.e. _w ¼ dw=dt, €w ¼ d2w=dt2 and €wg ¼ d2wg=dt2.

One final further scaling simplifies this equation. The generalised ordinate w and ground displacement ordinate wg are
re-scaled by (24). This results in Eq. (25), that is a Duffing’s [20–23] oscillator but with nonlinear damping.

w ¼ b�1=2
1 u; wg ¼ b�1=2

1 ug (24)

€u þ 2m1ð1þ mnu2Þ _u þ u� u3 ¼ �b2 €ug � b3ug (25)

mn ¼
m2

m1b1

(26)

3. Solutions of nonlinear system

3.1. What form should the spatial shape function f take?

This is a difficult question to answer for a number of reasons. Firstly and fairly obviously, it should be stated that the
closer f is to the fundamental nonlinear mode shape, the more accurate this single degree of freedom model will be.
Secondly, the relative stiffness of soil to pile governs this mode shape f. There is also the problem that if the reduction in
stiffness due to nonlinearity significantly influences this pile/soil spring stiffness ratio it will influence f. Hence the
accuracy of the simplified model is likely to reduce as response amplitude increases. Finally, the boundary conditions to
which the pile is subject govern the form of f significantly. The boundary conditions at the bottom (toe) of the pile are
governed by the soil layer at this level. The boundary conditions at the top (head) are governed by the pile cap, etc.

So how about employing the systems first linear natural mode for f? This would represent a projection of the nonlinear
system onto a truncated linear modal basis. It would give a very good approximation at low amplitudes. It would be useful
to observe how the soil/pile linear stiffness ratio, Z1, influences the linear fundamental natural mode f.

First let us compute an n degree of freedom estimate of the linear natural modes. A series of shifted Legendre
polynomials, Pn are used. These are defined to be orthogonal over range zero to one. The pile displacement y can be defined
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(28) in term of vector of shape functions h1 and h2 can be defined as (27). Essentially, the q generalised coordinates wq 2 R
q

will be constrained by the boundary conditions leaving n unconstrained generalised coordinates w 2 Rn.

hT
1 ¼ ½Pnþq�1; Pnþq�2; . . . ; Pn� 2 R

q; hT
2 ¼ ½Pn�1; Pn�3; . . .P0� 2 R

n (27)

y ¼ LðhT
1wq þ hT

2wÞ (28)

For a pile without pile cap the boundary conditions are y00ð1Þ ¼ y
000

ð1Þ ¼ 0; these are represented in Eq. (29). For the case of a
pile with pile cap a further boundary condition is included y0ð0Þ ¼ 0; these are represented in Eq. (30). Thus, the shape
function vector / that satisfies these boundary conditions is given by (31). The only requirement for use of this result is
that the boundary condition block matrix A1 2 R

q�q should not be singular. In the case of singular A1 reordering the
Legendre polynomials will normally help to obtain a non-singular A1. Note that re-ordering the rows or columns of general
matrix A cannot change its rank but it can change the rank of a sub-matrix of A; and this is what is proposed here. Block
matrix A2 2 R

q�n is generally not square. For clarity, Appendix A gives a worked example of Eqs. (29) and (31).

y00ð1ÞT1 y00ð1ÞT2
y
000

ð1ÞT1 y
000

ð1ÞT2

" #
wq

w

� �
¼ ½A1 A2�

wq

w

� �
¼ 0 (29)

y0ð0ÞT1 y0ð0ÞT2
y00ð1ÞT1 y00ð1ÞT2
y
000

ð1ÞT1 y
000

ð1ÞT2

2
664

3
775 wq

w

� �
¼ ½A1 A2�

wq

w

� �
¼ 0 (30)

y ¼ LwT/; / ¼ ðhT
2 � hT

1A�1
1 A2Þ

T (31)

Note that this approach is more subtle than conventional finite element analysis (FEA). Here, the shape functions are
continuous across the entire problem domain. This is more similar to boundary element method. Degrees of freedom (dofs)
are amplitudes of shape functions here. This contrasts with FEA, where degrees of freedom are general displacements or
rotations at nodal positions. Thus, in FEA, dofs at boundaries must be constrained to satisfy boundary conditions. Here
however, dofs are shape function amplitudes, thus it is necessary and sufficient to constrain almost any q dofs; (with the
proviso that these constrained dofs do not result in singular A1).

Given this series expansion for the pile displacement the Lagrangian P can be defined thus;

P
mL3
¼

1

2

�
að _wT/ð0ÞÞ2 þ

Z 1

0
ð _wT/Þ2 dx

�
�

1

2
s2

Z 1

0
ðwT/00Þ2 þ Z1xðw

T/Þ2 dx (32)

By employing the Euler–Lagrange equations to P the dynamic matrix D can be obtained; Eq. (34). The eigenvectors of D are
the natural linear modes of vibration of the pile–soil system.

K ¼

Z 1

0
/00/

00T
þ Z1x//T dx; M ¼ a/ð0Þ/ð0ÞT þ

Z 1

0
//T dx (33)

D ¼ s2M�1K (34)

The first linear natural frequency o1 vs. parameters Z1 and a is displayed in Fig. 2. The first mode profile can be employed
to determine moments and shear force functions. These functions are display graphically in Figs. 3 and 4. These moment
diagrams are very similar, qualitatively, to those obtained experimentally [8–10,19] and are consistent with other
theoretical work [24]. These conditions apply to case of homogeneous soil profile with depth. The presence of stiff soil
layers at the pile base that are overlain with softer, more flexible, soil layers would suggest a different set of support
boundary conditions not considered here. Though, in principle, the approach would be the same with some small
modifications for these different kinematic constraints.

A good analytical approximation to Fig. 2 is given in Appendices B–D, see Eq. (61). In addition a good approximation to
the linear first mode shape is presented. These formulae provide an alternative to employing Fig. 2 but are not used in
subsequent analysis in this paper.

From these figures the influence of Z1 on the deflected shape is significant. However, for a given Z1, the reduction in soil-
springs stiffness that is due to nonlinear behaviour of the soil changes the deflected shape a little. This is because only a
change in the order of magnitude of Z1 effects the first mode shapes significantly. Thus, there is evidence to suggest, in this
case, that the proposed single shape function (7) is a reasonable first approximation to the nonlinear natural mode. In
addition, this is evidence that suggests the use of a single degree of freedom reduced order model is valid. The exact form of
this shape function is obtained numerically by either eigenvalue analysis of matrix (34) or by using the very good
approximation given in Appendices C–E.
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3.2. Nonlinear resonance curve

In order to obtain a nonlinear resonance curve the system is driven by harmonic forcing, hence the equation of motion
is (35). F is the amplitude of the forcing in non-dimensional equation. The non-dimensional forcing frequency ratio o
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equals the ratio of =o1 where of would be the dimensional forcing frequency.

€u þ 2m1ð1þ mnu2Þ _u þ u� u3 ¼ F sinðotÞ; o ¼
of

o1
(35)

The parameters b1, b2 and b3 are dependant on the shape functions f and c that are themselves influenced
by the boundary conditions (constraints) of the pile. However it appears, at first glance, that these play no part in
Eq. (35).

In this paper, the nonlinear resonant frequency of the system is defined as the frequency at which extremum
(maximum) in the nonlinear resonance curve occurs. The location of this extremum is a difficult problem. It requires the
solution of the nonlinear ordinary differential Eq. (35). Unfortunately, there are no analytical approaches that are able to
obtain this solution, in general. Thus, one is left with the choice of semi-analytical-approximate methods such as harmonic
balance, multi-scales, averaging methods [25,26] or fully numerical continuation approaches [27,28]. In this paper, a
hybrid of a higher order harmonic balance and numerical continuation is used.

A second order estimate of the solution to this nonlinear equation can be obtained by assuming that the solution takes
the form (36) [29–31]. Higher order estimate were considered but found unnecessary for the sole objective of determining
the maxima of the resonance curves. This trial solution (36) is substituted into system (35). The coefficients of sinot,
cosot, sin 3ot and cos 3ot are evaluated and balanced on each side of the equation; and this results in four simultaneous
nonlinear algebraic equations (37)–(40). The classical harmonic balance approach [32] is employed. This neglects higher
order terms.

u ¼ a1 cosotþ a2 sinotþ a3 cos 3otþ a4 sin 3ot (36)

ð12 a3
2 �

1
2 a2

2a4 þ ð
1
2 a2

1 � a1a3 þ a2
3 þ a2

4Þa2 þ
1
2a2

1a4Þomnm1 þ 2m1oa2 � a1o2 . . .

þ3
4 a2

2ða3 � a1Þ �
3
2 a1a2a4 �

3
4 a3

1 �
3
4 a2

1a3 þ ð1�
3
2 a2

4 �
3
2a2

3Þa1 ¼ 0 (37)

ð12 a2
2ða3 � a1Þ � a1a2a4 �

1
2 a3

1 �
1
2a2

1a3 � a1a2
4 � a1a2

3Þom1mn � 2m1oa1 . . .

�o2a2 �
3
4 a3

2 þ
3
4 a2

2a4 þ ð1�
3
2 a2

3 �
3
4 a2

1 þ
3
2 a1a3 �

3
2 a2

4Þa2 �
3
4a2

1a4 � F ¼ 0 (38)

ð32 a2
3a4 þ

3
2 a3

4 �
1
2 a3

2 þ
3
2a2

1a2 þ 3a2
1a4 þ 3a2

2a4Þom1mn þ 6om1a4 . . .

�9a3o2 þ a2
2ð

3
4 a1 �

3
2 a3Þ �

3
4 a3a2

4 �
3
2 a2

1a3 �
1
4 a3

1 �
3
4a3

3 þ a3 ¼ 0 (39)

ðð32 a1 � 3a3Þa
2
2 �

3
2 a3

3 � 3a2
1a3 �

3
2 a3a2

4 �
1
2 a3

1Þom1mn �
3
4a2

1a2 . . .

�3
2 a2

2a4 �
3
2 a2

1a4 þ a4 �
3
4 a2

3a4 � 9o2a4 � 6om1a3 þ
1
4 a3

2 �
3
4a3

4 ¼ 0 (40)
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The solution of Eqs. (37)–(40) required a numerical procedure, such as Gauss–Newton ([33], function fsolve). However,
while a single solution to these equations is straightforward (with the correct numerical toolbox) the process of obtaining a
nonlinear resonance curve does require the addition of an arc-length continuation condition. Eq. (41) is a linear predictor
based on initial point on a path qi ¼ ½a1; a2; a3; a4;o�T, step size D and an normalised path vector
dqi ¼ ½da1; da2; da3; da4; do�T. Vector ~q iþ1 represents the first estimate of the next point along the continued path.
Eq. (42) is solved together with Eqs. (37)–(40); it ensures that solution must be normal to the path vector dqi. Essentially
these equations act as a correction to the prediction (41). Once a solution is obtained this becomes the new qiþ1. An update
of the vector is made dqiþ1 based on linear extrapolation of the previous points qiþ1 and qi (43).

~q iþ1 ¼ qi þDdqi (41)

ðqi � ~q iþ1Þ
Tdqi ¼ 0 (42)

dqiþ1 ¼
ðqiþ1 � qiÞ

Jqiþ1 � qiJ2
(43)

3.2.1. Values for strain dependant ratio of critical damping

In order to solve these harmonic balance equation damping parameters m1 and mn must be specified. A significant
amount of experimental work [34–37] and others has been performed on soils in order to determine the relationship
between damping ratio and cyclic shear strain amplitude. Most soils have a damping ratio of 0.01–0.02 at low strain
levels (of the order of 10�5) this grows approximately quadratically to about 0.15–0.25 at larger strain levels
(of the order of 10�2).

In theory it is possible to work from Eq. (18) and (23) to determine m1 and mn. However, a set of parameters need to be
assigned and these require, critically, knowledge of the width of the near-field zone zw and this is not well defined at
present. In addition mode shape f is required. This suggests that pile boundary conditions would influence the damping
parameters in (35). However, it would be beneficial to keep (35) independent of f as far as possible.

So an alternative approach is sought. Note that the normalised cubic stiffness term of (35) is bounded physically by
jujr1. Exceeding this limit is considered failure of the soil. Further investigations into velocity bounds of the catchment
basins can be made by applying techniques in [38,39]. Thus, it is assumed that the maximum damping of the soil is
achieved at this maximum displacement. It is assumed that at this level of normalised deformation that the system
damping reaches mmax. Thus, the nonlinear damping parameter mn is defined by (44).

mn ¼
mmax

m1

� 1 (44)

Fig. 5 displays an example of the nonlinear resonance curves for a range of forcing amplitudes. The vertical axis, in this
figure, represents the magnitude (the supremum norm, JuJ1) of the solutions.

This system shows a classical softening response with the resonance peak that falls over to the left with increasing
amplitude of forcing. At larger forcing amplitudes the response curves become multivalued; having a high amplitude
solution, a low amplitude solution and an unstable (saddle) solution. A pair of fold bifurcations (turning points) bound this
unstable solution. The presence of low and high amplitude coexisting solutions can result in sudden jumps to resonance
[40], from low to high amplitude with small changes in forcing frequency.

The extrema are denoted by circles in this figure, these extrema are nonlinear resonant frequencies of the system, or .

3.3. Nonlinear resonant frequency relationship

Fig. 6(a) is obtained when the resonant frequencies or are plotted against forcing amplitude F for various mn. An optimal
multidimensional polynomial (45) is fitted to these graphs in ðF;mnÞ, see Appendix B. Note that m1 shall be, in this paper,
universally assumed 0.01. This optimal least square approximation is very good for engineering purposes.

or

o1
C 1� 7:163F þ 0:1433mnF � 0:6578mnF2 � 4:808� 106 F

mn

� �3
 !

Z0:6 (45)

Hence with a knowledge of the linear natural frequency of the system o1, that is a function of pile and soil parameters, it is
possible to obtain an estimate of the nonlinear resonant frequency or by using formula (45). Note that this equation
suggests a bound on nonlinear resonant frequency o1ZorZ0:6o1.

It is also worthwhile obtaining a multidimensional least squares polynomial fit for the maximum amplitude of the
response solution JuJ1 in ðF;mnÞ. This is obtained in a similar fashion and is given by Eq. (46) and is displayed in Fig. 6(b).
Again, this is a very good fit for engineering purposes.

JuJ1C24:84F � 531:9F2 þ 4564F3 þ 2:363� 104 F

mn

� �2

þ 5:133
F

mn

� �1=2

r1 (46)

The ratio of peak response to forcing amplitude JuJ1=F, known as the nonlinear amplification factor, is displayed in Fig. 7.
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3.4. Relating non-dimensional forcing amplitude F to far-field PGA

The key result, hitherto, is Eq. (45). From this the nonlinear resonant frequency can be determined in terms of the linear
(very small soil-strain) fundamental natural frequency o1. This linear frequency o1 can be read from Fig. 2 (or Eq. (61)) for
various mass ratios a and linear soil/pile stiffness ratios Z1. Hence, with (45) and Fig. 2 (or Eq. (61)) it is possible to
determine the nonlinear resonant frequency of the pile-soil system in terms of parameters (i) mass ratio a, (ii) linear soil to
pile stiffness Z1, (iii) frequency s, (iv) large strain damping mn and (v) non-dimensional forcing amplitude F.
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Note, however, F is not a natural parameter; so it would be beneficial, for the practicing engineer, to express this in
terms of some dimensional quantity. By considering Eqs. (35) and (25) it is clear that the forcing function adopted in the
study thus far is equivalent to a ground motion ug that can be obtained by equating these equations. Scaled ground motion
wg and far-field ground motion €ygðx; tÞ can subsequently be determined by using (7) in terms of F, thus

€ygðx; tÞ ¼ o2
1L

o2F

b1=2
1 ðb2o2 � b3Þ

sin ðof tÞcðxÞ (47)

Hence, given a surface far-field peak ground acceleration (PGA) of ag ¼ maxð €ygð1; tÞÞ, the correspondent value of non-
dimensional forcing amplitude F, at resonance, is given by (48).

F ¼
ag

o2
1L

 !
A; A ¼ b1=2

1 b2 � b3

o1

or

� �2
 !

(48)

So, clearly, one final equation is also required; an expression for A in terms of system parameters Z1, Z2 and a.
The system non-dimensional parameters b2 and b3 can be evaluated in terms of parameters a and Z1 by using Eqs. (22),

(9), (10), (14) and (15). An estimate of the far-field ground displacement function c is required. In this paper a linear
function is assumed, Eq. (49).

c ¼ 1� x (49)

Richart et al. [41] derived theoretical estimates for the variation in amplitude with depth for both seismic Rayleigh and
Love waves. While these relationships are generally nonlinear, they are linear in the very shallow superficial layers of soil
in which the pile is embedded. Hence, linear (49) is reasonable.

Therefore, in this case, Eq. (48) can expressed as the following Eq. (50).

A ¼ Z1=2
2 f ðZ1;aÞ; f ðZ1;aÞ ¼

R 1
0 xf4 dxR 1

0 f
002
þ Z1xf

2 dx

 !1=2
aþ

R 1
0 fcdx

aþ
R 1

0 f2 dx

 !
(50)

a has a second order influence; and this is born out by numerical investigations. By employing a least square fit that is
reasonably good, R2 ¼ 0:98, the following expression is obtained (51). The coefficient b0 for this regression is (i) b0 ¼ 1:851
(pile with cap) and (ii) b0 ¼ 1:731 (for pile without cap).

F ¼ b0
ag

o2
1L

 ! ffiffiffiffiffiffi
Z2

Z1

r
(51)

4. Comparison with experimental centrifuge results [9,10]

4.1. Comparison with linear experimental results

It is important to ensure that the formulae presented are of the right order. Researchers [42–45] present interesting
experimental work on various failure mechanisms of piled structures. Experimental evidence is also available in the
literature for determining the linear resonance frequency. Work presented in [9,10] describes both full scale and centrifuge
studies on the cyclic dynamic lateral pile behaviour in a cohesionless soil. These tests result provide information necessary
as an initial validation of the linear resonant frequency o1. From the test data, API curves can be estimated using the
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Table 1
Comparison of experimental, theoretical and FEA estimates of natural frequency.

Ting et al. [9,10] Back analysis from experimental dataþEq. (60) FEA

Test series o1=2p ðHzÞ kw1 ðkN m�2Þ kw2 ðkN m�4Þ Z1 ð2Þ Z2 ð2Þ a (–) o1=2p ðHzÞ o1=2p ðHzÞ

D5Fx 1.63 4.27E5 3.19E8 3.64E4 3.34E9 0.018 1.8 1.77

D10Fx 2.13 4.99E5 3.49E8 6.57E4 7.64E9 0.021 2.0 1.84

D16Fx 1.56 1.99E5 2.41E8 3.18E5 7.37E9 0.017 1.5 1.61
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relative density of the sand. Fig. 8 show these P–y curves for the toe of the pile, for three data sets presented in [9]. Eqs. (4)
and (5) are employed to determine the spring constants kw1 and kw2. These allow a back calculation of soil/pile stiffness
parameters Z1 and Z2. These are displayed in Table 1. A graphical comparison of the frequency estimates is displayed in
Fig. 9. Parameters zw and zb are required to evaluate the soil mass contribution to the dynamics of the pile. Model updating
was employed to determine a best value of zwzb which as about 22. If zb ¼ 2, that out-of-plane breath is two diameters,
then the in-plane width of the near field is 11 diameters; or 5.5 diameters on both sides of the pile. The interaction effects
between multiple piles, is thought to be negligible at about 6 diameters [46,47]. While this seems of the right order, these
observations are only for the static loading and slow cyclic loading. Group pile interaction under dynamic lateral loading
may well extend beyond 6 diameters. Further, experimental work is required here.

The FE analysis involves the pile modelled as Euler-beam elements, the soil springs spaced at 1 m depths spacing. Spring
stiffnesses vary with depth linearly. The lumped soil masses at 1 m depth spacing (based on zwzb ¼ 22) and added along with the
lumped mass the top of the pile. The modal analysis is linear. The difference between the FEA results and theoretical estimates are
due to slight differences in modelling. For example FEA uses discrete springs while the theoretical estimate, Fig. 2 (or Eq. (61)) uses
a continuum of springs. It can be inferred are that Fig. 2 (or Eq. (61)) is quite good as a frequency estimate for this data set.

4.2. Application of nonlinear formula to this example

Using the data from the previous section it is possible to employ Eqs. (51) and (45) to obtain an estimate of the variation
of nonlinear resonant frequency vs. PGA. Fig. 10 displays these estimates. Validation of these results requires detailed
experimental work not available in [9,10].

5. Discussion and conclusions

The paper presents good formulae for both linear and nonlinear resonant frequency of a pile-soil system. It has been
demonstrated, quantitatively, how this resonant frequency reduces with increasing amplitude of seismic ground motion.
The paper characterises the performance of this system in general and highlights the possibility of multiple (low and high)
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amplitude solutions at certain frequencies. This nonlinear phenomenon is very easily overlooked in conventional nonlinear
finite element analysis. Note that multiple solutions at a particular frequency is not possible in a linear systems; thus the
presented modelling highlights some of the complexity introduced by nonlinearity of the soil. The formulae can be easily
incorporated into design as part of ‘code based’ equations and charts or as part of the background validation of a nonlinear
finite element analysis. Both are useful and timely at present.

An estimate of nonlinear resonant frequency of the floating pile system is presented; using Eqs. (45) and Fig. 2
(or Eq. (61)). The linear components of these, Fig. 2 (or Eq. (61)), is compared with experimental evidence and is found to be
of the right order. Experimental work [48,49] show that the resonant frequency does drop with increasing forcing
amplitude as the theoretical model suggest. Further experimental work would be very helpful. Experimental care is
required to determine both upper and lower branches of the resonance curves at higher amplitudes.

Eq. (51) allows the relationship between PGA and nonlinear resonant frequency to be estimated. An example
application of this is shown in Fig. 10. Experimental validation of this is required. Note that these estimates are a worst
case scenario, i.e. a harmonic ground motion, with a frequency that excites the pile structure resonantly. Further
calibration may be required to generalise this result to the case of more typical accelerogram ground motion.

Future work on a higher order nonlinear model would be helpful to validate the accuracy of the proposed reduced order
model of the pile. Although initial evidence presented, from variation in mode shape with soil stiffness, suggests that only
an order of magnitude change in soil stiffness influences the nonlinear mode shape. Thus, this low order model may be
quite good.
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The introduction of varying width of near-field soil layer would allow the model to have a variation in effective soil
mass with depth. It is likely that more soil motion occurs near the pile head and thus more mass should be included here. It
is highly desirable to perform careful experimental studies to ascertain the volume of soil that should be included in the
near-field.
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Appendix A. Example of obtaining set of orthogonal polynomials that satisfy the boundary conditions

The following is an illustrative example of low order for the sake of clarity. The actual formulation used in computations
is this paper is much higher order. Consider Eqs. (27) and (28); for this example let us employ two constraints y00ð1Þ ¼
y
000

ð1Þ ¼ 0 i.e. zero shear and moment at the foot of the pile. We shall use two constrained generalised coordinates q=2
(matching the two boundary conditions) and three unconstrained generalised coordinates n=3. Hence

h1 ¼
1þ 70x4

� 140x3
þ 90x2

� 20x
20x3

� 30x2
þ 12x� 1

" #
; h2 ¼

1þ 6x2
� 6x

2x� 1

1

2
64

3
75 (52)

Substituting the boundary conditions into these expression results in Eq. (29), which here is explicitly (53); then the block
matrices A1 and A2 are obtain directly.

180 60 12 0 0

840 120 0 0 0

� �
wq1

wq2

w1

w2

w3

2
6666664

3
7777775
¼

0

0

� �
(53)

In this example A1 2 R
2�2 is invertible. However, taking a look at the block of four zero in block matrix A2 it is clear that in

another example of boundary conditions A1 might not have been invertible. The trick here was to place the Legendre
polynomials in reverse order. So generally, this method may require some reordering (or some permutation) of the
orthogonal function such that A1 (that must be square) is invertible. The resulting set of 3 orthogonal functions are
obtained by Eq. (31). These three functions satisfy the boundary conditions.

/ ¼

7

5
þ 21x2

�
56

5
xþ

7

2
x4
� 14x3

2x� 1

1

2
664

3
775 (54)

Note, finally, that the rank of A1 must be equal to the number of constraints q.

Appendix B. Multi-dimensional least square estimate

Let the least square estimate of wðx1; . . . ; xnÞ be ~w and let it take the form given in Eq. (55); where coefficients and
polynomial function is defined by b and X, respectively, Eq. (56). The square error E between this least square estimate and
the exact expression is stated in Eq. (57).

~w ¼ bTx (55)

bT
¼ ½b0;b1; b2; b3;b4; b5; b6; b7; . . .�;

xT ¼ ½1; x1; . . . ; xn; . . . ; x
m
1 ; . . . ; x

m
n ; x1x2; . . .� (56)

E ¼

Z
� � �

Z
ð ~w �wÞ2 dx1 � � �dxn ¼

Z
� � �

Z
ðbTx�wÞ2 dx1 � � �dxn (57)

The least square error, with respect to the coefficients b of the multidimensional polynomial is obtained by differentiation
with respect to b, Eq. (58). Thus, the optimal coefficients are given by (60).

qE

qb
¼ 2Hb� 2h ¼ 0 (58)
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H ¼
Z
� � �

Z
xxT dx1 � � �dxn; h ¼

Z
� � �

Z
xw dx1 � � � dxn (59)

b ¼ H�1h (60)

Appendix C. Approximate formula for linear natural frequency x1

In this paper, the actual linear mode has been adopted for spatial shape function of the pile, fðxÞ. This linear
fundamental mode is obtained from a high order linear eigenvalue problem, see Section 3.1. In obtaining this eigenvector,
the eigenvalue is also obtained and hence o1, see Fig. 2. However, for more than 4 generalised coordinates, it is not
possible to obtain a closed form expression for this eigenvalue (root); Abel–Ruffini theorem. Thus, no simple and accurate
closed form expression for o1 is obtainable using this approach.

In addition, a least square expression for o1ða;Z1Þ was sought. However, no really good fit was easily achievable. So, as
an alternate, an approximation of this linear mode shape was sought. It was obtained by applying a horizontal force at the
pile head and using the pile deflected shape as an approximation to the linear mode. This approach only requires the
inversion of the stiffness matrix K that is analytically obtainable in closed form for higher order systems. This was then
used to obtain an closed form expression for o1ða;Z1Þ using Eqs. (10) and (14); resulting in Eq. (61).

o1Cs

ffiffiffiffiffi
sn

sd

r
(61)

Formulae for sn and sd are given in Appendices C, D and E. Note that formula (61) is a very good engineering approxi-
mation. The correlation between (61) and Fig. 2 is high ðR2 ¼ 0:99Þ. Thus, it can be concluded, for this problem, that
application of a point load at the lumped head mass produces an accurate estimate of the first mode across the entire space
ða;Z1Þ likely to be encountered in practice.
Appendix D. Floating toe pile without cap formulae

f ¼
qn

qd
(62)

qn ¼ ð1:855E7Z1 � 2:172E4Z2
1Þx

6
� ð4:174E7Z1 � 8:26E4Z2

1Þx
5
� � �

�1:125E5x4Z2
1 þ ð4:638E7Z1 þ 5:815E4Z2

1Þx
3
� � �

�ð6:68E9þ 3:403E7Z1 þ 8220Z2
1Þxþ ð5:01E9þ 1:18E7Z1 þ 1547Z2

1Þ (63)

qd ¼ 1547Z2
1 þ 1:18E7Z1 þ 5:009E9 (64)

The functions, sn and sd, required to determine the linear frequency parameter o1in equation (61) are given by (65) and
(66), respectively.

sn ¼ Z1ð1:534E11Z4
1 þ 5:273E15Z3

1 þ 3:783E19Z2
1 þ 1:951E25þ 5:926E22Z1Þ (65)

sd ¼ ð3:35E13Z4
1 þ 5:112E17Z3

1 þ 2:167E21Z2
1 þ 1:655E24Z1 þ 3:512E26Þa � � �

þ2:335E12Z4
1 þ 4:233E16Z3

1 þ 2:629E20Z2
1 þ 2:556E23Z1 þ 9:106E25 (66)

Appendix E. Floating toe pile with cap formulae

f ¼
qn

qd
(67)

qn ¼ ð9:419E6Z2
1 � 5822Z3

1Þx
6
� ð2:186E8Z1 þ 2:38E7Z2

1 � 2:361E4Z3
1Þx

5
� � �

þð4:964E6Z2
1 � 3:619E4Z3

1Þx
4
� � � þ ð2:186E9Z1 þ 2:97E7Z2

1 þ 2:505E4Z3
1Þx

3
� ð4:372E9Z1

þ2:222E7Z2
1 þ 6856Z3

1Þx
2
� � � þ ð2:624E10þ 1:748E9Z1 þ 2:172E6Z2

1 þ 181Z3
1Þ (68)

qd ¼ 181Z3
1 þ 2:173E6Z2

1 þ 1:747E9Z1 þ 2:624E10 (69)
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The functions, sn and sd, required to determine the linear frequency parameter o1 in Eq. (61) are given by (70) and (71)
respectively.

sn ¼ Z1ð1:534E11Z4
1 þ 5:273E15Z3

1 þ 3:783E19Z2
1 þ 1:951E25þ 5:926E22Z1Þ (70)

sd ¼ ð3:35E13Z4
1 þ 5:112E17Z3

1 þ 2:167E21Z2
1 þ 1:655E24Z1 þ 3:512E26Þa � � �

þ2:335E12Z4
1 þ 4:233E16Z3

1 þ 2:629E20Z2
1 þ 2:556E23Z1 þ 9:106E25 (71)
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